You can install it using pip:
pip install -U sentence-transformers
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('all-MiniLM-L6-v2')
#The sentence we like to encode
sentences = ['I love New York and california']
#Sentence is encoded by calling model.encode()
embeddings = model.encode(sentences)
#Print the embedding
for sentence, embedding in zip(sentences, embeddings):
print("Sentence:", sentence)
print("Embedding:", embedding)
print("")
Result:
Sentence: I love New York and california Embedding: [ 1.37644410e-01 -7.51644969e-02 8.78048167e-02 2.01561265e-02 -2.28883829e-02 2.33714823e-02 2.52926792e-03 -9.39000994e-02 -5.23725212e-05 1.40432995e-02 -7.70160696e-03 -4.15769704e-02 2.27416754e-02 7.22652897e-02 1.36604654e-02 -2.68634167e-02 -2.86001954e-02 -9.04295370e-02 2.12521870e-02 1.91395022e-02 1.73619073e-02 -3.37615646e-02 -6.35999590e-02 5.02365679e-02 5.41934781e-02 6.28829002e-03 3.82309668e-02 4.64837290e-02 -3.71122882e-02 1.85275171e-02 1.03333062e-02 4.16899174e-02 -6.59276778e-03 1.59689356e-02 5.19296229e-02 5.80011085e-02 7.29451329e-02 2.13103406e-02 3.92759293e-02 5.72733618e-02 1.19732996e-03 7.22848251e-02 5.61710186e-02 7.10910186e-02 -5.06776832e-02 -1.41253825e-02 1.68405306e-02 2.61653792e-02 1.18069679e-01 5.50002642e-02 8.44784155e-02 6.48811385e-02 -2.60819495e-02 5.09999096e-02 3.66810896e-03 5.43198846e-02 4.12356481e-02 2.37281062e-02 -3.44550870e-02 4.33588997e-02 5.71481101e-02 1.04301646e-02 1.11493366e-02 4.20730421e-03 2.58831792e-02 1.69945210e-02 -4.05377038e-02 7.43025988e-02 -1.21564001e-01 -9.32225063e-02 -3.16016003e-02 9.54769552e-02 -3.34618613e-02 7.23153949e-02 2.73502599e-02 -1.01827504e-02 -6.24339804e-02 2.76977010e-03 -2.21018009e-02 1.21364016e-02 8.98947343e-02 -3.85998376e-02 -4.04577442e-02 -5.60960267e-03 -2.18907073e-02 -3.68078537e-02 -1.20772749e-01 3.58958729e-02 1.54220276e-02 -6.07817732e-02 -2.18586139e-02 9.47963260e-03 -5.42811342e-02 -5.38762286e-02 -3.63451689e-02 -4.81499955e-02 -1.46228513e-02 1.31300520e-02 -3.85683551e-02 5.11597022e-02 6.84011774e-03 -2.97780596e-02 -3.96927558e-02 7.30512664e-02 8.56939610e-03 1.48007423e-02 -1.04568549e-01 2.77268398e-03 -1.64901931e-02 -6.75924961e-03 5.60450628e-02 6.55948669e-02 -5.00310352e-03 2.47400515e-02 3.61111551e-03 2.62983814e-02 7.42444918e-02 1.70614310e-02 4.99892868e-02 -1.05420172e-01 -8.26219171e-02 9.35819373e-03 -7.97018930e-02 8.96210968e-03 -7.74120316e-02 -6.27215654e-02 -7.62597248e-02 -2.58932790e-33 -5.90188727e-02 -1.03363775e-01 5.17210700e-02 5.40564135e-02 -1.74599178e-02 -3.27143110e-02 3.55337486e-02 -4.86923754e-02 -6.95674419e-02 -4.24752422e-02 6.39102459e-02 4.28963751e-02 -4.53596702e-03 1.72381084e-02 4.83061150e-02 -6.57562586e-03 1.61028653e-02 -2.02825237e-02 -8.89958665e-02 -1.58250201e-02 -1.66127328e-02 3.63012142e-02 3.52272578e-02 3.68604809e-02 -1.01329692e-01 -6.77285343e-02 -2.05100589e-02 -2.27379170e-03 -5.24000823e-02 -1.74856633e-02 -2.30949372e-03 4.16920483e-02 2.74563301e-02 6.36653602e-02 5.66343181e-02 -2.69177705e-02 -2.10260996e-03 -1.10369665e-03 -2.29661251e-04 3.83845083e-02 3.42010632e-02 8.83037597e-03 -2.26231269e-03 4.27962914e-02 1.16426066e-01 6.15621209e-02 7.30302511e-03 2.62995064e-02 1.92805585e-02 -3.54545601e-02 -7.28459060e-02 4.13358939e-04 -5.97784035e-02 -2.94342842e-02 4.33434062e-02 3.77135985e-02 2.31206138e-02 -3.05680409e-02 -1.20802810e-02 4.34072018e-02 -1.12191081e-01 6.90983012e-02 1.51759814e-02 -5.21824770e-02 -2.96796439e-03 2.67460998e-02 5.25080152e-02 6.38537556e-02 -1.30746979e-02 7.26079345e-02 -7.92988297e-03 4.73020971e-02 2.10559573e-02 8.42723344e-03 9.56717879e-03 -2.08640955e-02 1.95479728e-02 5.08078672e-02 2.33498700e-02 -4.61519659e-02 1.88075192e-03 -2.32076868e-02 3.27980816e-02 5.62850758e-02 8.22198093e-02 -3.93547770e-03 1.94832888e-02 -9.30613503e-02 -8.17317422e-03 -3.53441597e-03 -9.36117619e-02 -2.18674242e-02 5.04115038e-02 -4.25932482e-02 -2.45535783e-02 1.25825136e-33 2.24549975e-02 -1.04875572e-01 6.86553046e-02 -2.33263988e-02 -6.57677874e-02 -5.02743721e-02 2.94679846e-03 3.15836184e-02 3.83657143e-02 7.16751069e-02 -5.86510301e-02 -2.32127979e-02 8.72206688e-02 1.01776697e-01 -2.14551743e-02 -2.15498661e-03 6.24768250e-02 1.61212422e-02 -6.62349015e-02 2.02137176e-02 5.00029661e-02 2.51461808e-02 -9.49210152e-02 7.54394606e-02 -4.48629484e-02 -1.83397401e-02 -5.73516078e-02 4.36908044e-02 -6.04310930e-02 -1.89141110e-02 -3.89147946e-03 3.47730033e-02 -3.43763158e-02 -4.12480012e-02 -5.30615747e-02 2.56295390e-02 7.17593404e-03 -1.02518484e-01 4.01092023e-02 -2.28660204e-03 -3.34212482e-02 -7.83993751e-02 6.31789714e-02 6.11711815e-02 -7.66601320e-03 3.25521752e-02 -5.50698899e-02 1.09141367e-02 -9.31958556e-02 1.46373804e-03 -7.50995576e-02 -7.60900613e-04 -1.24376670e-01 3.07047758e-02 -2.11940221e-02 1.39825018e-02 6.95805997e-02 1.00714602e-01 -8.42134133e-02 -1.01953954e-01 -5.57468869e-02 3.98378521e-02 -2.62620412e-02 2.40890216e-02 2.56228428e-02 -4.46879268e-02 2.82586869e-02 -8.13086852e-02 2.81321239e-02 -1.14972563e-02 -3.05002015e-02 2.54310630e-02 -9.24826562e-02 -4.43724915e-02 -2.49565896e-02 -7.68740401e-02 4.63437941e-03 2.20275726e-02 -9.20886733e-03 8.33049789e-02 5.88122457e-02 4.65588123e-02 -1.02715679e-01 7.54224882e-02 1.98339280e-02 1.15948759e-01 -3.00983898e-02 -3.61634493e-02 -3.27731445e-02 1.69283226e-02 2.63567381e-02 9.83813256e-02 -1.07720055e-01 -1.31827459e-01 -1.44157093e-02 -1.58903593e-08 -2.87522078e-02 3.52825224e-02 -6.39589280e-02 -5.71001321e-02 -6.57288432e-02 -1.13221752e-02 4.84816357e-03 1.40296379e-02 -1.08478563e-02 1.48246111e-02 5.64403422e-02 5.98759800e-02 2.76843440e-02 -7.43237743e-03 1.69865210e-02 -5.57252802e-02 7.85216466e-02 3.15672122e-02 -1.55278342e-02 2.33314466e-02 -6.27164841e-02 1.12167023e-01 4.87434044e-02 4.17917892e-02 -3.59688103e-02 3.94481374e-03 6.02081567e-02 -4.16041911e-02 1.06128819e-01 2.42874529e-02 -2.96725407e-02 -4.05877791e-02 -8.60146210e-02 -3.39325406e-02 1.21577727e-02 -9.19928700e-02 -5.56551926e-02 -5.00211641e-02 2.47286502e-02 -6.18760623e-02 1.47702862e-02 5.21350354e-02 -5.88884428e-02 1.14407260e-02 -3.85594629e-02 -4.26222421e-02 4.50313799e-02 -6.22469150e-02 1.64106733e-03 4.93155010e-02 -5.19632809e-02 4.62426096e-02 -2.24193763e-02 3.91270146e-02 3.04195732e-02 1.65446457e-02 -5.68751059e-02 -2.15671714e-02 2.79100407e-02 8.45969990e-02 7.85368159e-02 4.04276466e-03 3.02387904e-02 -4.16672677e-02]